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Abstract

An analysis of adhesively bonded joints using conventional finite elements does not

capture the singular behavior of the stress field in regions where two or three dissimilar materials

form a junction with or without free edges. However, these regions are characteristic of the

bonded joints and are prone to failure initiation. This study presents a method to capture the

singular stress field arising from the geometric and material discontinuities in bonded

composites. It is achieved by coupling the local (conventional) elements with global (special)

elements whose interpolation functions are constructed from the asymptotic solution.

Introduction

Although bonded joints are a prime means for transferring load in the construction of

composite structures, they are potential failure sites due to the presence of geometric and

material discontinuities causing high stress concentrations. Reliable predictions of the goss

response of the structure cannot be made accurately unless a precise description can be made of

the interface through which the transfer of load is achieved. Thus, understanding the nature of
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interracialstressesis critical in designingreliablebondedjoints,andeffortsto understandthe

mechanismsneededto improvethestren_hof thebondedisotropicandcompositematerialsare

still continuing.Previousanalysesof bondedjointscanbecategorizedasthe"shear-lag"and

"finite-element"models. An extensivereviewand in-depthdiscussionof the previous

investigationscanbefoundin articlesbyTsaiandMorton(1994)andDingandKumosa(1994).

Boththeshear-lagmodelsandfinite-elementmodelswithconventionalelementsfail to

capturethesingularstressfield at thejunctionof dissimilarmaterials.BlanchardandWatson

(1986)concludedthatafiniteelementanalysisof suchregionswouldnotguaranteeaconvergent

peakstressevenwithcontinuedmeshrefinement.In orderto capturetheexactnatureof the

stressfield andto minimizetheintensivecomputationsarisingfromtherefinementof themesh,

Barsoum(1988a,1988b,1990)introducedan iterativeschemein conjunctionwith the finite-

elementanalysiswithouttheuseof aspecial(enriched)element.Thisapproachiseffectivefor a

bimaterialinterfacewith or withoutcracks.However,it suffersfromthenumberof iterations

requiredfor convergenceandthe inabilityto enforcethecontinuityof tractioncomponents

acrosstheinterface.Also,therateof convergenceandtheaccuracyof theresultsaredependent

on thematerialpropertiesandthescalingof thedisplacementsduringtheiterations.Dingand

Kumosa(1994)andDinget al. (1994)appliedthismethodto determinethesingularstressfield

nearthe intersectionof a bimaterialinterfacewithfreeedgesinadhesivejoints. Althoughthey

capturedthe accuratedescriptionof the stressfield nearthe junction, the strenghof the

singularitybecomesinaccurateat distancesverycloseto the freesurface,wherethe failure

usuallyinitiates. Thismaybeattributedto thelimitationof thefiniteelementsutilizedin the

analysis.

To overcomethis typeof shortcomingin modelingacrackalonga bimaterialinterface,

Chen(1985)developedanelementwithappropriateinterpolationfunctionsbuilt in to account

for thesingularityatthecracktip. Theunknownstressintensityfactorsareincludedexplicitlyin

theexpressionsfor the interpolationfunctions,andtheyaredetermineddirectlyaspartof the

solution.Recently,Gadiet al. (1995)extendedthismethodtodeterminethesin_malarstressfield
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for thecracktip situatedat thejunctionof threedissimilarsectorsof material. Basedon a

similarconcept,KuoandChen(1993)introducedahybridelementwithappropriatestressfields

to investigatethe transientthermalstressesin multi-layeredregionswith finite dimensions.

However,boththehybridandtheenrichedelementsarelimitedto aspecificgeometrywherethe

freeedgesareeitherperpendicularorparalleltothebimaterialinterface,respectively.

In a finite-elementanalysisof bondedjoints, Destuynderet al. (1992)introduceda

methodto reducethe adhesivelayerto a line throughtheuseof asymptoticexpansionsof

analyticalsolutionsfor thesingularstressfield nearthegeometricandmaterialdiscontinuities.

Also,Lin andLin (1993)introducedanewelementbasedon theTimoshenkobeamtheoryfor

modelingtheadhesivelayerwhileaccountingfor thetransverseshearandnormalstressesin the

adherents.However,thiselementdoesnotaccountfor thesingularbehaviorof stressfields.

Thepreviousanalyticalandfinite-elementinvestigationswereprimarilyconcernedwith

isotropicadherentmaterials,becausethepresenceof orthotropicmaterialsis not suitablefor

directlyconstructingtheanalyticalsolutionto thesingularstressfield. An analysiscapabilityis

lackingfor determiningtheexactnatureof thestressfietd in compositestructureswithbonded

joints involvingtwo or threedissimilarmaterials. Therefore,a global finite elementwith

appropriateinterpolationfunctionstocapturethecorrectsingularbehaviorarisingfrommaterial

andgeometricdiscontinuitiesisdevelopedhereandis implementedintoafiniteelementprogram

with conventionalelements. This programpermitsthe analysisof variousbondedjoint

configurationswith accuratestressdistributionsin thecriticalregionsandtheextractionof the

stressintensificationparameteror theenergyreleaseratein thepresenceof acrack.Theresults

fromthisanalysisprovidetherequiredparametersfor thefracturecriterionintroducedbyGradin

andGroth(1984)in orderto estimatethestren_hof thebondedjoint. Also, thisprogramis

integratedinto thecommerciallyavailablefiniteelementpro_amANSYSsothatthedesigner

canusetheANSYSpre-andpost-processingcapabilitiesandexecutetheprogramwithin the

ANSYSenvironment.
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Solution Method

The global-local finite element concept introduced by Mote (1971) is utilized in

determining the stress field in regions consisting of a junction of two or three wedge-shaped

sectors of orthotropic material with or without free edges (Figure l). The extension and

application of this method were demonstrated by Bradford et al. (1976, 1979, 1984), Dong

(1983), and Her (1990). The development of the global element stiffness matrix is similar to that

of a conventional (local) element, except for the interpolation functions. In this study, these

functions are established by solving for the stress and displacement fields in the regions

illustrated in Figure I. In these regions, each material is assumed to be elastic, homogeneous,

and specially orthotropic, with elastic coefficient C/_.. In reference to the Cartesian coordinates

(x, y), the stress-strain relations under plane-strain assumptions are

t O'._. 0 C66 j [2E_,

where o-_3 and e_3 are the stress and strain components, respectively. A method is presented

in the Appendix that provides an average stiffness matrix for balanced laminates for which the

material and reference coordinate systems do not coincide. This average stiffness matrix contains

the independent coefficients of a specially orthotropic material. Throughout this study, the sub-

or superscript k denotes a specific sector of the region. The interfaces among the adjacent

materials, specified by angles 0i, are assumed to be perfectly bonded, thus requiring the

continuity of traction and displacement components along the interfaces.

The explicit forms of the displacement and stress components in the vicinity of the

junction are constructed by solving for the displacement equilibrium equations expressed as

C 1 lUx.x_ + C66ux,yy C66)Uy,xy = 0

(c 2+c 6C66Uy,.r._¢ + Ckluk yy + _ )Ux,xv. =0

(2)
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As suggested by Williams (1952), representing the displacement components as

k r )"G_ with x, y (3)uct(r,O) = (0) a =

permits the reduction of Equation (2) to a system of ordinary differential equations in terms of

the unknown functions Gka(O) in matrix form"

M k (O; Cij )C_ (O) + (1- _)M_: (O; Cij )C_ (O)

- [ _'2Mk ( O;Cij ) + Yt M'k (O; Ci) ) - _'2Lk (Cij )] GI_ (O) =02

where the known matrices L k and M k are defined by

Lk (Cij) = [ (Clkl +0 ck6)

(4)

M_, = (O; Cij ) =
½m'(O;C  ,Cg6)]

m(O;c2k2,c6k6) ]

with m(O;a,b) = a cos 20 + b sin 28. The unknown functions G_ (O) are contained in the vector

G k (0) as GT(0) = [Gx_ (0), G_ (0)]. In Equation (2), the displacement components are defined

in reference to a polar coordinate system, (r,O), whose origin coincides with the junction of the

vertices as shown in Figure 1. The unknown parameter X.,dependent on the geometry and the

material properties, indicates the stren_h of the singular behavior for the stress field. Utilizing

the displacement representation given in Equation (3) and the strain displacement relations along

with Equation I, the displacement and stress components required for imposing the interface and

boundary conditions can be expressed in polar coordinates as

• Throughout this study, a prime denotes differentiation with respect to the variable 0.
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u k (r,O) = r _'T(0)Gk (0)

a k (r, 0) = r ;t-1 [)LEk (0; Cij )G k (0) + F_:(0; Cij )G_ (0)]

in which the explicit forms of the matrices are given by

and

= [cos0 sin0]
T(0) Lsin0 cos0j

E_ (0; Cij ) =
m(O;Clk2,Clkl- 2C6k6)cos0

- - C66, C66) c os 0 m(0;C6k6,C,5 - clk2- C6k6)sin0J

[ -m(O;C,_2+2Cg6,C_,2)sinOm(O;C_:,C,_2+2Cg6)cos01
Fk(0;Co)=Lm(0;ck6,CIk,- Clk2- ck6)cos0 -m(0;ck2- ck2- C6k ,C6k ,)sin0J

(5)

q (o;co)=[-m(0;Cl_,- 2C6_6,C,_)sin0

m(O;Cl_2+2Cg6,C_2)sinO]

m(O;Clkl,ok2- 2Cg6)cos0]

Determination of the unknown functions G_(0) with cz = x, y requires the solution of

the system of ordinary differential equations with variable coefficients, Eq. (4), subject to the

interface and boundary conditions. In the case of three sectors of dissimilar materials forming a

junction, as shown in Figure la, the interface conditions are expressed as

where

The vectors u k (r,O) and o"k (r,O)contain the displacement and stress components, respectively,

T(r,O) =[u k (r,O),u k (r,O)] and G T =[crTo(r,O),crko(r,O)]. For completeness, the normalas u k

stress component, _7rr(r,O ) is given by

o'rkr(r, 0) = r ;t-t [2e_" (0; Co )G k (0) + fr (0; Co )G i (0)l



-7-

k+le_
_3(r,Ok ) = aa3 ',',Ok )

k-2
Crk3(r,Ok )=Crafl (r, Ok+l) k=

k+l(r, Ok ) k=l,2u k (r, Ok ) = ua

uk(r, Ok)=uk-I(r, Ok+t) k=3

ct,fl = r,O with ct = fl # r

a,3=r,O

(6)

For the intersection of a bimaterial interface with free edges, as shown in Figure lb, the interface

and boundary conditions become

cr_3(r,0k) = 0

_k+l ,,
_3(r,O_.+l) = '..'ct# tr, Ok+ll

k+l
era3 (r, Ok+2) = 0

k=l and ct, fl=r,O with a=flg:r (7)

k k+l, ,._
ua(r,Ok+l)=Ua [r,t;,k+l); k=l and ot,fl=r,O

The solution to the differential equations, Eq. (4), exists for values of _. that satisfy the

characteristic equation of the homogeneous system of equations resulting from the imposition of

the conditions (Eq. 6 or 7). Because of the complexity of the variable coefficients in Eq. (4), the

solution to these equations is constructed numerically by recasting them as a set of first-order

ordinary differential equations in terms of G_ (0) and G_ k (0) in the form

IG(°>] _' I o 1 o

d Ja_(o)[ [Atl(O;fij,Z) Btl(O;Cij,,_) Zt2(O;fij,_.)
/ = o o o

[Gj,(0)J A21(O;Cq,.2t,) B:l(O;Cij._) A:2(O;Cij,_.)

BI2(O;Cij, _) JGx(O)_

,
B22 (0; Cij, J.) [G; (0)j

where Aij and Bij are the components of the matrices A and B defined by



and

B/¢(0;Cij, X) = (/1.- I)M_ 1(0; Cij )M_ (0; Ci) )

The solution to this form of equations, Eq. (8), subject to the interface and boundary conditions

is achieved by a Runge-Kutta forward integration scheme in conjunction with the shooting

method. This procedure requires the initial estimates of the eigenvalues, X, and the corresponding

eigenfunctions, Gu_ (0), as well as the target conditions. The integration process continues until

the target conditions are satisfied, which requires the difference between the computed and

prescribed conditions to vanish. In the case of three sectors of dissimilar materials, the target

conditions are obtained from the interface conditions between the third and first regions as

u3(03)=u[(04) and _3(03)=a1(04) (9)

with 04 = 2re - 03. The explicit forms of these conditions are expressed as

Q=G3(O3)-G[(04)=O

(I0)

R = F3 (03; Cq )G_ (03 ) + X[E 3 (03; C(j ) - E I (04; Cij )]G 3 (03 ) - F 1(04 )G_ (04 ) = 0

in whichQ r =[Qx,Qy] and R r =[Rx,Ry ]. In order to satisfy these conditions, Eq. (10), a

positive definite objective function is defined in terms of the modulus of the complex functions

Qx, Qy, Rx, and Ry as

s IQ I +Qy] = +leviz+ e,,2 (l l)

With the well-established optimization techniques, the objective function is minimized by

varying the real and imaginary parts of X, G t (04), and G_ (04) .
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Determinationof the eigenvaluesand correspondingeigenfunctionssatisfyingthe

equilibriumequationsand the interfaceconditionspermitsthe expressionof stressand

displacementcomponentsas

N

cra_ = _ xiFa_(r,e ;_. i)
i=1

N

= Y_ xiq_(,,O;,a.i )
i=1

a, fl= <,y
(12)

The generalized coefficients, x i, are determined by enforcing the continuity of the nodal

displacements at the interface nodes between the global element and the surrounding local

(conventional) elements. As illustrated in Figure 2, the global element with M interface nodes

requires the imposition of the continuity conditions given by

ux (r t , OI )

Uy (q,O t)

t.ty (r M , 0 M

Uy(rM,OM)

(jx(rl,Ol'_l) (jx(rl,Ol;,a.2) ... Cjx(rl,Ol;,a.N)

G:,,(rt,01' 2l) q.,,.(q,Oi;_2) ..- (jy(q,Oi;/1.N)
• : ;

Gx(rM ,0 M ;)1-1)

Cjy(rM ,OM ;,a.I)

Gx(r,,,4 ,O M ; J- 2 )

Gx(rM ,OM;J-2)

... qx(rM,OM;_.N)

•.. qy(rM,OM;_.M)

]Xl

x 2

(13)

or

{u} = [G]{x}

In general, the number of equations, 2M, exceeds the number of unknown coefficients, N,

resulting in an overdetermined system. Therefore, the unknown coefficients are expressed in

terms of nodal displacements based on the least squares minimization procedure as follows:

-I

{x}=[Z]{u} with [Zl=[[qlr[q]] [qlr (14)
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Determinationof thesecoefficientspermitsthe expressionof the stressand displacement

componentsin termsof thenodaldisplacements,andthestrainenergyin theglobalelement
t*

becomes

l;u =-_ {uIr[zlr {Fa_}r {Ga I[Zl{u}rt_dS , a,_= x,y (15)
s

where 77/3are the components of the unit normal to the surface, S, of the global element. The

vectors {Fa_ } and {G_ } are defined as

{Fet_} = {Fa_(r,O;Xl), FetB(r,O;_.2) ..... Fet_(r,O;2t N )}

(16)

IGat-={Gct(r,O;11), Gc_(r,0;t2) ..... G_(r,O;_'N)}

Minimizing the strain energy with respect to the nodal displacements associated with the

global element results in the global stiffness matrix [k] defined as

2 f IzllY  tr fGaI+ /r I) zl,7  s (17)

s

The global and local element stiffness matrices are assembled to establish the system equilibrium

equations as

[K]{6} = {f} (18)

where [K] is the system stiffness matrix and the vectors {5} and {F} include the total nodal

displacement and force components, respectively. This process led to the development of a finite

element pro_am incorporating both global and local elements. The local elements consist of

quadrilaterals and triangular elements, whose interpolation functions can be found in any

textbook on the elementary finite element method. The shape of the global element can be an n-

sided polygon, depending on the details of the mesh surrounding the global element. The

number of interface nodes and the size of the global element were established based on

convergence requirements.

" Repeated subscripts imply summation.
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Thisglobal-localfiniteelementprogramis implementedin theANSYSplatformthrough

theuseof ANSYSParametricDesignLan_age(APDL)commands.It permitsexecutionof the

programwithoutleavingtheANSYSenvironment.Theglobalelementis introducedinto the

ANSYSelementlibraryas"USERI04" throughtheUserPro_ammerFeatures(UPFs)routines.

For this purpose,ANSYSis customizedandrelinkedby includingtwo FORTRANroutines,

"uec104.f"and"ue1104.f".Thefirst routinedescribesthecharacteristicsof theelement,suchas

themaximumnumberof nodesassociatedwiththeglobalelement.Thesecondroutinearranges

theelementmatrices,loadvectors,results,andelementsolutionsdataduringnormalANSYS

execution.However,it actsasa dummyroutinebecausetheglobal-localanalysispro_amis

usedin constructingthesolutionratherthanANSYS.Therealconstantsforeachglobalelement

aredefinedby:

1. Thex and y coordinates of the origin of the local coordinate system associated with

the global element.

2. Material number associated with the region.

3. Angle specifying each region.

This capability permits the use of ANSYS pre- and post-processing for the global-local finite

element analysis.

Numerical Results

Analysis of bonded dissimilar composite materials by the present approach is

demonstrated through a single-lap adhesive joint with three typical configurations. The geometry

and dimensions of each of these lap-joint configurations are described in Figure 3. The

parameters c 1 and c2 and h I and h 2 denote the end distance (c) and thickness (h) of the top and

bottom adherents, respectively, with numerical values of c I = c2 = 200 mm and

h I = h2 = 5 ram. Also, a long and a short joint with overlap len_hs of _ = 320 mm and 40 mm

are considered in order to capture the effect of joint len_h. For joint type 1I, bevel angles of

81 and 02 are equal and are specified as 45 ° . The parameters _-I, 22, 01, and ¢2 describing the
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overflowof the adhesivein joint type III arespecifiedas eI = e; =2h,with the adhesive

thicknessh = 0.4 mm and _l =_2 =45°. As shown in Figure 3, the upper adherent is subjected

to a uniform stress, _0, and the lower adherent is fixed at the other end. The adhesive is an

isotropic material with Young's modulus E = 3400 MPa and Poisson's ratio v = 0.35. Top and

bottom adherents are composed of [0°/90°/0 °] plies with properties E L =147 GPa,

E r = l lGPa, GLT =5.3GPa, and VLT =0.3. The averaged orthotropic properties for the top

and bottom adherents are computed to be 118.73Cll = GPa, C22 =36.14 GPa, Cl2 = 12.06

GPa, and C66:6.21 GPa. In the case of isotropic adherents, the Young's modulus and

Poisson's ratio are taken as E = 200 Gpa and v = 0.3, respectively.

The finite element representation of each lap-joint configuration with global and

conventional elements is illustrated in Figures 4-6. Their overall deformations under the

specified load of o"0 --IMPa are shown in Figure 7. The eigenvalues retained in the

construction of the interpolation functions for each global element are tabulated in Table 1 for

the isotropic adherents. For a type I joint, the behavior of the peel and the shear stresses in each

global element along the bond line from the junction point is given in Figure 8. The peel and

shear stresses along the bond line of the most stressed region represented by global element D for

all joint types are shown in Figure 9.

Based on the strain energy density criterion introduced by Sih and Macdonald (1974), an

examination of the strain energy density around the junction point for a specified distance

provides possible failure sites and the crack propagation path once the failure initiates. The

variations of the tangential and shear stresses and the strain energy density for a specified core

region, r0 =0.05 mm, around the junction in each global element are shown in Figures 10-12.

These figures reveal that the failure in joint type I is most likely to initiate in global element D at

the junction of the top adherent and the adhesive, and it is predicted that it will propagate along

the bond line. For type 17lap-joints, the possible failure site is also in global element D along the

bond line. For type III lap joints, the failure may initiate at the junction points E or F and the
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crackis likely to growintotheadhesivein theverticaldirection.Theseresultsareall basedon

theeigenvaluespresentedinTable1.

Conclusions

Theglobal-localfiniteelementanalysiseliminatestheuseof afinemeshandprovidesan

accuratedescriptionof thestressfield in thecriticalregionsof thebondedjoints. Theorderof

the singularityalongwith thecorrespondingstressintensificationparametercanbeusedfor

predictingfailure in the adhesivelayerof the joint. With this capability,the geometryand

materialpropertiescanbeoptimizedto minimizestressintensification.Also,thisapproachcan

beextendedto theanalysisof bondedjointswithvisco-elasticadhesivelayers.As indicatedby

Ratwaniet al. (1982),the effectof modulusrelaxationbecomesimportantbecausea large

redistributionof stressesoccurswhilethejoint is loaded.
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Appendix

Because only specially orthotropic materials are considered in this formulation, it is

limited to laminates with a ply orientation of either 0 ° or 90 °. However, a method exists to

determine the average specially orthotropic stiffness matrix for a balanced laminate. A balanced

laminate is a panel that has a negatively oriented ply for every positively oriented ply. Thus, this

analysis can be expanded to model any balanced laminate if an average stiffness matrix is

utilized.
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To determine the average stiffness matrix, the stiffness matrix of each ply in the global

coordinates is required. The stress-strain relationship for the k_ layer of a laminate can be

represented as

cr_ = Ck_ k (19)

or

6 _ = C'_ g_: (20)

where the tilde denotes the quantities in the local reference frame. The unit vectors of the local

reference frame can be written in terms of the direction cosines and the global unit vectors as

n_ l 1 m 1 n I n x

nrt = l2 m 2 n,__ n v

nq 13 m 3 n 3 n

(21)

With these direction cosines, stresses and strains can be transformed to the global reference

frame through the transformation

(22)

where

Tk=

l? l2 l_ 212/3 2/1/3 21112
9 2

mi- m 2 m 3 2m2m 3 2rntm 3 2mlm 2

n? n 2 n2 2n2n 3 2nln 3 2nln 2

mln I m2n2 m3n3 (m2n3+rn3n 2) (mtn3+m3n 1) (mln2 +m2n 1)

llnl 12n2 13n3 (/2n3 +/3n2) (/tn3 +/3nl) (/in2 +/2nl)

llrn 12m 2 13m3 (/2m3 +13m2) (/lm3 +/3rnl) (/tin2 +/2ml)

(23)

Substituting Eqs. (21) and (22) into (19) while noting that

yields

TkT kr = I (24)

crk = T k _k T_ rek (25)
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Thus, the transformation of the stiffness matrix from local coordinates to global coordinates is

C k = TkckTkr (26)

The average stiffness matrix, C, of a balanced laminate is then represented by

c =l _ tk c k (27)
h t

which represents an average weighting of the stiffness matrix based on the thickness of the layer.

Provided the laminate is balanced, C will represent a specially orthotropic material with 12

nonzero coefficients, 9 of which are independent. This averaging process is expected to provide

reasonably acceptable results, provided the paired balancing plies are located closely to one

another and the pries are relatively thin.
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Table1.

Lap-JointType

Eigenvaluesassociatedwiththeglobal elements in the joints.

Global Elements

Without adhesive overflow

Beveled adherents

With adhesive overlow

AandD

-0.3272

0.7138 +_ i 0.5964

-0.3272

0.7138 _ i 0.5964

-0.0219

0.1884

BandC

-0.3015

0.7144 -'- i 0.5961

-0.1604

0.7053 _ i 0.5931

-0.0219
0.1814

E and F

-0.3702

-0.2211
0.1588

0.6441 2 i0.0433
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Fi_mare 8.

Fi_mare 9.

Figure Captions

Junction of three and two dissimilar orthotropic materials.

Interface nodes between the global element and the surrounding local elements with

or without free edges.

The geometry of a single lap joint: (a) without adhesive overflow; (b) with beveled

adherents; (c) with adhesive overflow.

Finite element discretization of the lap joint without adhesive overflow.

Finite element discretization of the lap joint with beveled adherents.

Finite element discretization of the lap joint with adhesive overflow.

Overall deformation of the long and short joints.

Variation of stresses along the interface near the junctions of a short and long joint

without adhesive overflow in global elements A-D.

Variation of stresses along the interface in global element D near the junction of

short joints of type I-III.

Figure I0. Variations of the tangential and shear stresses and the strain energy density around

the junctions of short joints without adhesive overflow.

Figure 12. Variations of the tangential and shear stresses and the strain energy density around

the junctions of short joints with beveled adherents.

Figure 13. Variations of the tangential and shear stresses and the strain energy density around

the junctions of short joints with adhesive overflow.
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